

### Multidrug resistant *Acinetobacter baumannii* – a decade of the successful clone in Croatia

SVEUČILIŠTE U SPLITU MEDICINSKI FAKULTET Ivana Goić Barišić University Hospital of Split University of Split School of Medicine



| Bacteria (WHO category)                                               | wнo          | CDC                                      | ESKAPE |
|-----------------------------------------------------------------------|--------------|------------------------------------------|--------|
| Acinetobacter baumannii, carbapenem-R                                 | Critical     | Serious (MDR)                            | Yes    |
| Pseudomonas aeruginosa, carbapenem-R                                  | Critical     | Serious (MDR)                            | Yes    |
| Enterobacteriaceae, carbapenem-R, 3 <sup>rd</sup> -gen ceph-R (ESBL+) | Critical     | Urgent (carbapenem-R)<br>Serious (ESBL+) | Yes    |
| Enterococcus faecium, vancomycin-R                                    | High         | Serious (VRE)                            | Yes    |
| Staphylococcus aureus, methicillin-R, vancomycin-I/R                  | High         | Serious (MRSA)<br>Concerning (VRSA)      | Yes    |
| Helicobacter pylori, clarithromycin-R                                 | High         |                                          |        |
| Campylobacter spp., fluoroquinolone-R                                 | High         | Serious (drug-R)                         |        |
| Salmonellae spp., fluoroquinolone-R                                   | High         | Serious (drug-R)                         |        |
| Neisseria gonorrhoeae, 3 <sup>rd</sup> -gen ceph-R, fluoroquinolone-R | High         | Urgent (drug-R)                          |        |
| Streptococcus pneumoniae, penicillin-NS                               | Medium       | Serious (drug-R)                         |        |
| Haemophilus influenzae, ampicillin-R                                  | Medium       |                                          |        |
| Shigella spp., fluoroquinolone-R                                      | Medium       | Serious                                  |        |
| Clostridium difficile                                                 |              | Urgent                                   |        |
| Candida spp. fluconazole-R                                            |              | Serious (Flu-R)                          |        |
| M. tuberculosis                                                       |              | Serious (drug-R)                         |        |
| Group A Streptococcus                                                 |              | Concerning (erythro-R)                   |        |
| Group B Streptococcus WHO PPL, C                                      | DC, & ESKAPE | Concerning (clinda-R)                    | 1      |

#### Acinetobacter baumannii: Emergence of a Successful Pathogen



Countries that have reported an outbreak of carbapenem-resistant *Acinetobacter baumannii*. Red signifies outbreaks reported before 2006, and yellow signifies outbreaks reported since 2006.

Peleg et al., Clin Microbiol Rev., 2008

#### MDR Acinetobacter baumannii



## MDR Acinetobacter baumannii

- crude mortality rates in patients with A. baumannii bacteremia varied between 30 and 76%
- factors associated with worse prognosis include immunosuppression, drug resistance, severity of underlying illness, inappropriate antimicrobial therapy, septicemia, and prior antibiotic exposure





Front Cell Infect Microbiol, 2017

#### ECDC

Figure 3.23. Acinetobacter spp. Percentage (%) of invasive isolates with combined resistance to fluoroquinolones, aminoglycosides and carbapenems, by country, EU/EEA countries, 2017



#### CROCMID 2016 – CROCMID 2019

Figure 3.19. Acinetobacter spp. Distribution of isolates: fully susceptible and resistant to one, two and three antimicrobial groups (among isolates tested against fluoroquinolone, aminoglycoside and carbapenems), EU/EEA countries, 2016



Percentage of total

Resistant to one antimicrobial group Resistant to two antimicrobial groups

#### CROCMID 2016 – CROCMID 2019

Figure 3.19. Acinetobacter spp. Distribution of isolates: fully susceptible and resistant to one, two and three antimicrobial groups (among isolates tested against fluoroquinolones, aminoglycosides and carbapenems), EU/EEA countries, 2017



Country (included is ola tes/total reported is olates)

Percentage of total

# Resistance to carbapenems in Croatia 2005-2009



Croatian Committee for Antibiotic Resistance Surveillance

#### Clinical isolate from UHS in 2004



Goić-Barišić I., PhD, 2009

#### Clinical isolate from UHS in 2004



Goić-Barišić I., PhD, 2009

# Mechanism of resistance – hyperproduction of OXA-107 due to the ISAba1 location upstream of the gene



Evans et al., CMI, 2008



#### The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii

Jane F. Turton<sup>1</sup>, M. Elaina Ward<sup>2</sup>, Neil Woodford<sup>2</sup>, Mary E. Kaufmann<sup>1</sup>, Rachel Pike<sup>2</sup>, David M. Livermore<sup>2</sup> & Tyrone L. Pitt<sup>1</sup>



#### JOURNAL OF Clinical Microbiology



JOURNAL OF CLINICAL MICROBIOLOGY, Oct. 2009, p. 3348–3349 Vol. 47, No. 10 0095-1137/09/\$08.000 doi:10.1128/JCM.02394-08 Copyright © 2009, American Society for Microbiology. All Rights Reserved.

#### Occurrence of OXA-107 and IS*Aba*1 in Carbapenem-Resistant Isolates of *Acinetobacter baumannii* from Croatia

Ivana Goic-Barisic,1\* Branka Bedenic,2 Marija Tonkic,1 Anita Novak,1 Stjepan Katic,2 Smilja Kalenic,2 Volga Punda-Polic,1 and Kevin J. Towner3

# Resistance to carbapenems in Croatia 2009-2017



#### Croatian Committee for Antibiotic Resistance Surveillance

#### 2009 - 2019



Acinetobacter baumannii is a multidrug-resistant opportunistic pathogen that causes nosocomial infections and outbreaks, particularly in the intensive care unit (ICU) setting,<sup>1</sup> Many outbreak strains belong to one of three worldwide lineages, known originally as European clones I, II and III. These correspond to sequence groups 2, 1 and 3, respectively, each of which includes a number of different genotypes defined by pulsed-field gel electrophoresis (PFGE).<sup>2</sup> Only

genomic DNA with Apal revealed that all isolates belonged to the European clone 2 lineage. All isolates also displayed the same multidrug resistance pattern (with no inhibition zone around imipenem or meropenem discs), but susceptibility to sulbactam and colistin (Table I).

Bacterial DNA was extracted using a DNAze kit (Qiagen, Hilden, Germany) according to the manufacturer's instructions. The presence of genes encoding class D carbapenemases was detected by multiplex polymerase chain reaction using primers specific for the

Goic-Barisic I, et al., Journal of Hospital Infection (2011), doi:10.1016/j.jhin.2010.12.003





# 2009/10





Goić-Barišić I.

### **Molecular investigation - PFGE**

- PFGE typing of new clone in UHC Split
- similarity in PFGE profile
- similarity in antibiotic resistance
- OXA-40 (OXA-72) carbapenemase (Macrogen, Europe)

| Dorma                     | PFOE ACONS             | 25 are ws                             |
|---------------------------|------------------------|---------------------------------------|
| 79 49 49 54               |                        | CA HH                                 |
| Solution Solution Version | 314 E I UL I I         | 10*                                   |
|                           |                        | No. 341                               |
|                           | A THE LEFT FUL         | 10 10.01                              |
|                           |                        | 10 FLAT 3                             |
|                           | 3. 10. 1 1448 144      | NR PEAK 2                             |
|                           |                        | 49 24                                 |
|                           | JUL II. JULIAN         | M 30                                  |
|                           |                        | 10 13                                 |
|                           | 31 11 111111           | HP 33                                 |
|                           |                        | 14                                    |
|                           |                        | 19 N                                  |
|                           |                        | 10 10                                 |
|                           |                        | 17 IV                                 |
|                           |                        | 11                                    |
| -                         |                        | 19 19                                 |
|                           |                        | 10 20                                 |
|                           |                        | 19 D                                  |
|                           |                        | 19 22                                 |
|                           |                        | 9 21                                  |
|                           |                        | 1 N N                                 |
|                           |                        | 1 H H                                 |
|                           |                        | 19 Jan                                |
|                           |                        | 10 29                                 |
|                           |                        | 19 31                                 |
|                           | 11 11 11 10 10 1       | 10 22                                 |
|                           |                        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|                           |                        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|                           |                        |                                       |
|                           |                        | E S                                   |
|                           |                        | III III                               |
|                           | 11 11 11 11 11 1       | <b>X</b>                              |
|                           |                        |                                       |
| VI.                       |                        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|                           | 10 10 10 10 00 00 00 V |                                       |
| N                         | 10 100 100000          |                                       |
|                           |                        |                                       |

#### Carbapenem-resistant isolates (2012-2016)

|     | CC Ox  | CC Pas | OXA-51<br>variant |                               |
|-----|--------|--------|-------------------|-------------------------------|
| IC1 | CC109  | CC1    | OXA-69            | Croatia                       |
| IC2 | CC92   | CC2    | OXA-66            |                               |
| IC3 | CC929  | CC124  | OXA-71            |                               |
| IC4 | CC103  | CC15   | OXA-51            | Each IC has an OXA-51 variant |
| IC5 | CC227  | CC79   | OXA-65            |                               |
| IC6 | CC944  | CC78   | OXA-90            |                               |
| IC7 | CC110  | CC25   | OXA-64            |                               |
| IC8 | CC447  | CC10   | OXA-68            |                               |
| IC9 | CC1078 | CC464  | OXA-94            |                               |

courtesy Paul Higgins, 2019

# MLST typing IC2 from 2009-2016

- According to the MLST analysis by using Oxford scheme fragments of seven housekeeping genes (gltA, gyrB, gdhB, recA, cpn60, gpi and rpoD) were amplified by PCR
- Previously most common ST-195 inside CC 2

• ST – 231 in Pula and Zagreb

Ladavac R et al., J Glob Antimicrob Resist 2017

| Isolate | Origin     | Date of    | Sequence | Clonal  | IC   |
|---------|------------|------------|----------|---------|------|
|         |            | isolation  | type     | complex | type |
| OB 3831 | Sputum     | 11.09.2015 | 1421ª    | 92      | 2    |
| OB 3929 | Tracheal   | 18.09.2015 | 195      | 92      | 2    |
| OB 4027 | Sputum     | 24.09.2015 | 1421ª    | 92      | 2    |
| OB 4138 | Bronchial  | 02.10.2015 | 195      | 92      | 2    |
| S2/1    | Hospital   | 27.08.2015 | 195      | 92      | 2    |
| S2/2    | wastewater |            | 195      | 92      | 2    |
| S2/3    |            |            | 195      | 92      | 2    |
| S2/4    |            |            | 195      | 92      | 2    |
| S1/1    |            | 06.10.2015 | 195      | 92      | 2    |
| S2/5    |            |            | 195      | 92      | 2    |
| S2/6    |            |            | 195      | 92      | 2    |
| S2/7    |            |            | 195      | 92      | 2    |
| S2/8    |            |            | 195      | 92      | 2    |
| S2/9    |            |            | 195      | 92      | 2    |
| IN32    | Urban      | 23.09.2015 | 195      | 92      | 2    |
|         | sewage     |            |          |         |      |
| Sava3   | River      | 11.10.2015 | 1421ª    | 92      | 2    |
| Sava4   | water      |            | 195      | 92      | 2    |
| Sava5   |            |            | 1421ª    | 92      | 2    |
| Sava6   |            |            | 1421ª    | 92      | 2    |

Seruga Music et al., J Hosp Infect, 2017

# MLST typing IC2 in 2017

- New resistotype and new ST 502 in UHS in 2017
- OXA-72 carbapenemase
- Unusual resistance pattern with MIC for imipenem inside susceptible range according EUCAST rules and high level of resistance to meropenem

| Isolate | Gene locus/allele |      |      |      |       |     | Sequence type | Clonal | IC      |      |
|---------|-------------------|------|------|------|-------|-----|---------------|--------|---------|------|
|         | gltA              | gyrB | gdhB | recA | српб0 | gpi | rpoD          |        | complex | type |
| 2777    | 1                 | 12   | 3    | 2    | 2     | 100 | 3             | 502    | 92      | 2    |
| 3058    | 1                 | 12   | 3    | 2    | 2     | 100 | 3             | 502    | 92      | 2    |
| 3084    | 1                 | 12   | 3    | 2    | 2     | 100 | 3             | 502    | 92      | 2    |





Acinetobacter 2017

11th Internationa Symposium on the Biology of Acinetobacter



### CC 92 inside IC 2

- dominant clone in hospitals in Croatia
- biofilm formation
- survival in the environmental conditions, including seawater
- reduced susceptibility to disinfectants of *A. baumannii* biofilms

### CC 92 inside IC 2

- dominant clone in hospitals in Croatia
- biofilm formation
- survival in the environmental conditions, including seawater
- reduced susceptibility to disinfectants of A. baumannii biofilms



Kaliterna V. et al., 2015

#### **Multicenter investigation in Croatia**



- more than 100 clinical isolates of A. baumannii (2009)
- focused on ability to form biofilm in correlation to genotypes (clones), origin of tested isolates and resistance to antibiotics

Kaliterna V., Goić-Barišić I., Croatian Committee for Antibiotic Resistance Surveillance, 2014

#### Ability to form biofilm

#### Stronger ability to form biofilm

- from respiratory specimens
- in ICUs
- in susceptible and intermediate susceptible isolates to imipenem, meropenem and amikacin





• Kaliterna V. et al., 2015

### CC 92 inside IC 2

- dominant clone in hospitals in Croatia
- biofilm formation
- survival in the environmental conditions, including seawater
- reduced susceptibility to disinfectants of A. baumannii biofilms

#### Acinetobacter baumannii - long survival among Gram-negatives



Hrenović J. et al., Eurosurveillance, 2016



#### Acinetobacter baumannii - long survival among Gram-negatives

survival in seawater during 50 days days of monitoring



Kovačić A. et al., 2017

#### Transmission and survival of carbapenem resistant Acinetobacter baumannii outside hospital setting

#### Ana Kovacic, Martina Seruga Music, Svjetlana Dekic, Marija Tonkic, Anita Novak, Zana Rubic, Jasna Hrenovic, Ivana Goic-Barisic\*



#### First prospective study in Croatia

Wastewater was sampled for five times, in the period from October 2014 until April 2015. 10 isolates of *A. baumannii* were recovered from hospital wastewater and compared with 4 isolates from hospitalized patients.



### CC 92 inside IC 2

- dominant clone in hospitals in Croatia
- biofilm formation
- survival in the environmental conditions, including seawater
- reduced susceptibility to disinfectants of *A. baumannii* biofilms

# Susceptibility to disinfectants

• benzalkonium chloride and chlorhexidine

| Designation | Origin                                                |  |  |  |  |  |
|-------------|-------------------------------------------------------|--|--|--|--|--|
| ATCC        | ATCC 19606 strain                                     |  |  |  |  |  |
| EU1         | Hospital isolate, UHCS, 2004                          |  |  |  |  |  |
| EU2         | Hospital isolate, UHCS, 2009                          |  |  |  |  |  |
| ST4         | Hospital isolate, UHC, 2009                           |  |  |  |  |  |
| ST10        | Hospital isolate, UHC, 2009                           |  |  |  |  |  |
| IN12        | Environmental isolate, WWTP of Zagreb, 2014, influent |  |  |  |  |  |
| IN21        | Environmental isolate, WWTP of Zagreb, 2014, influent |  |  |  |  |  |
| EF4         | Environmental isolate, WWTP of Zagreb, 2014, effluent |  |  |  |  |  |

Table 1 A. baumannii isolates used in the experiments

UHCS - University Hospital Centre Split, Croatia; WWTP Zagreb - Central wastewater treatment plant of the city of Zag

#### EU2 and ST4 showed the highest resistance to both disinfectants



Ivanković T., Goić-Barišić I., Hrenović J., 2017

# Susceptibility to disinfectants



Figure 3 Minimal bactericidal concentrations of benzalkonium chloride (BAC) and chlorhexidine digluconate (CH) again environmental and hospital isolates of A. baumannii after 1, 5, and 10 min of contact

Ivanković T., Goić-Barišić I., Hrenović J., 2017

# Susceptibility to disinfectants

- The biofilm bacteria were more resistant to disinfectants than the planktonic populations, as more than 50 % of the biofilm population and none of the planktonic population survived 5minute exposure to disinfectans tested in this study
- The biofilm populations on ceramic tiles were significantly more resistant than those on glass coverslips, even though the amount of biofilm was practically the same on ceramics and glass

# Conclusion

- decade of persistence CC 92 in Croatia
- similar results from Iran, China, Brazil, Colombia, India
- OXA-72 and OXA-23 most common oxacillinases in CRAB
- ability to form biofilm and reduced susceptibility to disinfectans
- endemic in hospitals in Croatia

# Conclusion

- Once endemic in a healthcare unit, A. baumannii is extremely difficult to eradicate.
- Nevertheless, it is still possible to eradicate these organisms from a unit when an uncompromising approach is taken to infection control.

In any event, we are closer to the muchthreatened 'end of antibiotics' for *A.* baumannii more than for any other common pathogen

> David M. Livermore, Trends in Microbiology 2006;14: 413-20

#### Thank you

Kevin Towner, UK Ana Kovačić Jasna Hrenović Vanja Kaliterna



All collaborators on project Croatian science foundation **Natural habitat of clinically important** *Acinetobacter baumannii* (project 252556)

